(de Havilland) DH 103 Hornet @·AIRCRAFTUBE

  • de Havilland DH-103 Hornet F1
de Havilland DH-103 Hornet F1
    de Havilland DH-103 Hornet F1
  • The DH-103 Hornet 1st prototype
The DH-103 Hornet 1st prototype
    The DH-103 Hornet 1st prototype
  • de Havilland DH-103 Sea Hornet F.20
de Havilland DH-103 Sea Hornet F.20
    de Havilland DH-103 Sea Hornet F.20
  • DH-103 Sea Hornet NF.21 (1955)
DH-103 Sea Hornet NF.21 (1955)
    DH-103 Sea Hornet NF.21 (1955)
  • de Havilland Hornet F.1
de Havilland Hornet F.1
    de Havilland Hornet F.1
  • de Havilland DH-103 Sea Hornet F.20
de Havilland DH-103 Sea Hornet F.20
    de Havilland DH-103 Sea Hornet F.20
  • DH-103 Sea Hornet NF.21
DH-103 Sea Hornet NF.21
    DH-103 Sea Hornet NF.21
  • de Havilland DH-103 Sea Hornet F.20 (1947)
de Havilland DH-103 Sea Hornet F.20 (1947)
    de Havilland DH-103 Sea Hornet F.20 (1947)
  • de Havilland Hornet F.3
de Havilland Hornet F.3
    de Havilland Hornet F.3
  • Sea Hornet FR.20 (RAAF)
Sea Hornet FR.20 (RAAF)
    Sea Hornet FR.20 (RAAF)
  • Hornet F.3s of 80 squadron
Hornet F.3s of 80 squadron
    Hornet F.3s of 80 squadron
  • de Havilland Hornet F.3 of 45 squadron
de Havilland Hornet F.3 of 45 squadron
    de Havilland Hornet F.3 of 45 squadron
  • Hornet F.3 of 80 squadron
Hornet F.3 of 80 squadron
    Hornet F.3 of 80 squadron
  • At Laverton
At Laverton
    At Laverton
  • de Havilland DH-103 Sea Hornet F.20
de Havilland DH-103 Sea Hornet F.20
    de Havilland DH-103 Sea Hornet F.20
  • de Havilland Hornet F.1
de Havilland Hornet F.1
    de Havilland Hornet F.1
  • Sea Hornet F.20 of 801 Squadron on HMS Implacable
Sea Hornet F.20 of 801 Squadron on HMS Implacable
    Sea Hornet F.20 of 801 Squadron on HMS Implacable
  • de Havilland DH-103 Sea Hornet FR.20
de Havilland DH-103 Sea Hornet FR.20
    de Havilland DH-103 Sea Hornet FR.20
  • Missed approach
Missed approach
    Missed approach
  • DH-103 Sea Hornet NF.21
DH-103 Sea Hornet NF.21
    DH-103 Sea Hornet NF.21
  • A Sea Hornet on HMS Illustrius
A Sea Hornet on HMS Illustrius
    A Sea Hornet on HMS Illustrius
  • The Sea Hornet prototype on HMS Ocean during carrier landing trials
The Sea Hornet prototype on HMS Ocean during carrier landing trials
    The Sea Hornet prototype on HMS Ocean during carrier landing trials

de Havilland Hornet

The de Havilland DH.103 Hornet was a twin-piston engined fighter aircraft developed by de Havilland. It further exploited the wooden construction techniques that had been pioneered by the earlier de Havilland Mosquito. Development of the Hornet had started during the Second World War as a private venture, an aim for the aircraft was to conduct long range fighter operations in the Pacific Theatre against the Empire of Japan. However, the war ended before the Hornet reached operational squadron status.

The Hornet entered service with RAF Fighter Command where it equipped several day fighter units and was commonly stationed in the British mainland. It saw combat in the Far East, being used successfully as a strike fighter as part of the British military action taken during the Malayan Emergency. A navalised carrier-capable version, the Sea Hornet, had been envisioned early on and was procured by the Fleet Air Arm of the Royal Navy.

Origins

In the autumn of 1941, the de Havilland company found that it had the spare design capacity to work on a new project. At this point, the Mosquito had entered full-rate production and preliminary work on a jet-propelled fighter aircraft, which would subsequently emerge as the Vampire, was waiting for the production of prototype engines. The company promptly recognised a need for a high-speed, unarmed, night bomber powered by a pair of large Napier Sabre piston engines and a design for such an aircraft was first proposed under the designation D.H. 101 in October 1941. Accordingly, a design team, led by R. E. Bishop with C. T. Wilkins assisting, was assembled with the aim of developing the D.H. 101, which was initially pursued as a private venture.

However, the Sabre engine was suffering from availability problems at that point, and thus the DH. 101 was soon replaced by a lower-powered design, with the internal designation D.H. 102. This proposal was intended to be powered by a pair of Rolls-Royce Griffon or Rolls-Royce Merlin engines; however, the use of either of these engines would have meant that the aircraft would be somewhat slower, and hence less attractive, than the existing Mosquito.

By November 1942, de Havilland had elected to shelve the night bomber project and instead to centre its efforts on producing a long-range fighter, designated as the D.H. 103, that would make the maximum possible use of the Merlin engine. The D.H. 103 resembled a scaled-down Mosquito, with only a single seat; it was intended to take on other single-seat fighter aircraft, particularly those operated by Japan, while still being capable of conducting very long range missions in order to be of use in the Pacific Theatre. The long range requirement led to the fuselage being highly streamlined. An independently-developed version of the Merlin engine which possessed a low frontal area was selected for use on the D.H. 103.

By the end of 1942, an initial mock-up of the D.H. 103 had been completed at de Havilland's Hatfield facility and was soon afterwards demonstrated to officials of the Ministry of Aircraft Production. Due to the heavy wartime commitments that were already placed upon the Ministry, there was not an immediate issuing of permission to construct the D.H. 103. However, in June 1943, the project stopped being a private venture when the Ministry released Specification F.12/43, which had been written around the D.H. 103 proposal. Shortly thereafter, the D.H. 103 project received the name Hornet.

From an early stage, it was envisaged that the Hornet could be adapted for naval use and operated from the flight decks of aircraft carriers. As a result, priority was given early on to ensuring that such adaptation could be readily done: as such, measures to maintain and support the pilot's ease of control, especially when flown at low speeds, were incorporated, and attention paid to providing the pilot with a high level of visibility. The two propellers were driven in opposite directions to improve the take-off and landing characteristics, and high-drag flaps were integrated to provide for greater power during approaches.

Prototypes and refinement

By January 1944, the first fuselage shell for the first prototype D.H. 103, RR915, was under construction on production jigs at Hatfield; RR915 was rolled out for engine runs on 20 July 1944. On 28 July 1944, only thirteen months after the official sanctioning to proceed with development, RR915 conducted its maiden flight, piloted by Geoffrey de Havilland, Jr., the company's chief test pilot. Flight tests of RR915 led to it achieving a recorded speed of 485 mph (780 km/h) in level flight. Within two months, over fifty flight hours were accumulated by RR915. The second prototype, RR919, was more representative of production aircraft, having provisions for being outfitted with a pair of 200-gallon drop tanks and a pair of 1,000 lbs bombs on hard points underneath the wings.

Towards the end of 1944, the assembly line for the Hornet F.1, the initial production model, was being established at Hatfield, and orders had already been received for the Royal Air Force (RAF). On 28 February 1945, PX210, the first of 60 production F.1 aircraft was delivered to the Aeroplane and Armament Experimental Establishment (A&AEE) at RAF Boscombe Down. On 29 October 1945, a production Hornet F.1, PX237, was used for the type's first public appearance at an open day at RAE Farnborough.

Additional prototypes were used for the development of improved variants of the Hornet. One such prototype, PX312, participated in the development of an improved fighter model to succeed the F.1, designated as the Hornet F.3. A further three prototypes, PX212, PX214, and PX219, were converted by the Heston Aircraft Company from Hornet F.1 standard aircraft to represent and test aspects of the initial navalised version of the Hornet, which was later designated as the Sea Hornet F.20. PX212 and PX214 were only partially navalised, being outfitted with arrestor hooks but lacking the wing-folding mechanisms of subsequent production aircraft, but PX219 was fully navalised and later conducted carrier deck trials onboard the aircraft carrier HMS Ocean.

Two further prototypes, PX230 and PX239, were completed for an all-weather night fighter, the Hornet NF.21. PX239, originally built as a Hornet F.20, was outfitted with power-operated folding wings and a large dorsal fillet, which was later retrofitted onto all production aircraft to comply with a new requirement to provide "feet off" directional stability with one engine stopped. On 25 October 1948, the first deck trials commenced onboard HMS Illustrious; these were so successful that testing rapidly proceeded to the night trials phase. On 16 May 1947, PX230 was lost during service trials when the aircraft disintegrated in mid flight; the pilot successfully bailed out following the breakup of the aircraft.

Hornet F.3, PR.2 and FR.4

The wings of the Hornet F.3 were stressed to carry external ordnance; two to four 60 lb (27 kg) RP-3 rockets could be carried under each wing; it was also possible to carry a combination of four rockets with one bomb of up to 1,000 lb (454 kg), or an additional drop tank on each wing, ranging in capacity up to 200 Imp gal (909 l). Internally, the fuel tanks were enlarged from a total capacity of 360 Imp gal (1,636 l) to 432 Imp gal (1,964 l) and additional equipment was added. Larger horizontal tail surfaces were adopted, with larger elevator horn balances. With the evolution of longer-range, jet-powered fighters such as the de Havilland Vampire, de Havilland Venom and Gloster Meteor, the Hornet became obsolete fairly quickly. The F.3 was the last Hornet derivative to see operational RAF service.

The Hornet PR.2 was intended to operate as a long-range photo-reconnaissance aircraft. The Hispano cannon were removed and cameras were mounted in the rear fuselage. Total internal fuel capacity was increased to 528 gal (2,400 l). A total of three prototypes, PX216, PX220 and PX249, were converted from standard Hornet F.1 aircraft, later followed by five more. The requirement for these aircraft lapsed with the end of the Second World War in the Pacific; all were used in arrester barrier trials at Boscombe Down, and scrapped before entering RAF service. Twelve Hornet FR.4s were modified from F.3s in much the same way, except that the cannon were retained and the internal fuel capacity slightly reduced from that of the fighter. These FR.4 derivatives saw service with the RAF in Malaya and Hong Kong in the early 1950s.

Sea Hornet F.20, NF.21 and PR.22

The Hornet was designed with the possibility of naval service on carriers firmly in mind. To this end good low-speed handling was required, along with good all-round visibility for the pilot. The basic Hornet design excelled at meeting these requirements. Shortly after the first Hornet prototype flew, Specification N.5/44 was issued to de Havilland, covering the modification of the Hornet for naval service. The Heston Aircraft Company was contracted to carry out the conversion work on three early production F.1s. The work entailed altering the wings to incorporate folding mechanisms so that each outer wing panel, from the aileron/flap line outboard could be folded upwards and inwards at an angle. The hinges were part of the upper wing skin structure while the lower wing skins incorporated securing latches, and Lockheed hydraulic jacks were used to move the wing panels. Slotted flaps were introduced to improve low speed "flaps down" control.

The lower rear fuselage was reinforced with two additional spruce longerons designed to take the stresses imposed by the external "vee" framed arrestor hook, which was flush-mounted below the fuselage. The frame was made up of steel tubing with a forged-steel hook and was held against the fuselage by a "snap gear". Because the Hornet used the American "3-point" system of catapult-assisted takeoff, two forged steel catapult bridle hooks were fitted, one below each wing, close to the fuselage. The de Havilland rubber-in-compression undercarriage legs could not absorb the rebound energies imposed by carrier landings. They were replaced by more conventional hydraulic oleos which embodied torque links.

Merlin 133/134s (derated from 2,070 hp/1,543 kW to 2,030 hp/1,535 kW) were fitted to all Sea Hornets. Other specialised naval equipment (mainly different radio gear) was fitted and provision was made for three camera ports, one on each side of the rear fuselage and one pointing down. Sea Hornet F.20s also incorporated the modifications of the Hornet F.3, although the internal fuel capacity was 347 Imp gal (1,557 l), slightly reduced from that of the F.1. The modifications added some 550 lb (249 kg) to the weight of the aircraft. Maximum speed was decreased by 11 mph (18 km/h).

The Hornet NF.21 was designed to fill a need for a naval night fighter. Special flame-dampening exhausts were installed, and a second basic cockpit was added to the rear fuselage, just above the wing trailing edges. ASH radar equipment was placed in the rear of this cockpit, with the radar operator/navigator seated facing aft. To gain access, a small trapdoor was provided in the lower fuselage; a fixed, teardrop-shaped bubble canopy, which could be jettisoned in an emergency, provided a good field of view. At the front of the aircraft, the nose underwent a transformation with the small rotating ASH radar dish being housed under an elongated "thimble" radome. The horizontal tail units were increased in span. The effect of these modifications on performance was minimal; about 4 mph (6 km/h).

The Sea Hornet PR.22 was a dedicated photo reconnaissance aircraft version of the F.20. The cannon were removed and the apertures faired over. Three cameras were installed in the rear fuselage: two F.52s for night use and one K.19B for day. A total of 23 PR.22s were built, interspersed with F.20s being built at Hatfield.

Civilian Hornet

The lone civilian Hornet, and the only one to be owned by a non-British operator, was a Sea Hornet F.20 TT193. It had originally been dispatched to Edmonton, Alberta, Canada to conduct winter trials; following these tests, TT193 was sold rather than be transported back to England. Registered CF-GUO, the aircraft was operated by Spartan Air Services and Field Aviation until 11 June 1952 when an engine failure caused a forced landing at Terrace, British Columbia. Some of the remains are still there in private hands.

Flying the Sea Hornet

Captain Eric "Winkle" Brown, former fighter pilot and officer of the Fleet Air Arm, was one of the world's most accomplished test pilots and he still holds the record for flying the greatest number of aircraft types.

Just after VE Day the first semi-naval Sea Hornet PX 212 arrived at the RAE, Farnborough. Eric Brown initiated "work-up to deck-landing" trials. 37 years later, he was still impressed:

"...the next two months of handling and deck landing assessment trials were to be an absolute joy; from the outset the Sea Hornet was a winner!"

"The view from the cockpit, positioned right forward in the nose beneath a one-piece aft-sliding canopy was truly magnificent. The Sea Hornet was easy to taxi, with powerful brakes... the takeoff using 25 lb (2,053 mm Hg, 51" Hg) boost and flaps at one-third extension was remarkable! The 2,070 hp (1,540 kW) Merlin 130/131 engines fitted to the prototypes were to be derated to 18 lb (1,691 Hg, 37" Hg) boost and 2,030 hp (1,510 kW) as Merlin 133/134s in production Sea Hornets, but takeoff performance was to remain fantastic. Climb with 18 lb boost exceeded 4,000 ft/min (1,200 m/min)"...

"In level flight the Sea Hornet's stability about all axes was just satisfactory, characteristic, of course, of a good day interceptor fighter. Its stalling characteristics were innocuous, with a fair amount of elevator buffeting and aileron twitching preceding the actual stall"...

"For aerobatics the Sea Hornet was absolute bliss. The excess of power was such that manoeuvres in the vertical plane can only be described as rocket-like. Even with one propeller feathered the Hornet could loop with the best single-engine fighter, and its aerodynamic cleanliness was such that I delighted in its demonstration by diving with both engines at full bore and feathering both propellers before pulling up into a loop!"

During this series of tests Captain Brown found that the ailerons were too heavy and ineffectual for deck landing and there were some problems with throttle movement, brakes and the rubber-in-compression undercarriage legs were still fitted. de Havilland were quick to modify the aircraft. Eric Brown:

"Landings aboard Ocean had been made without any crash barrier... Yet, in the case of the Sea Hornet, I had felt such absolute confidence that I was mentally relaxed... Indeed, there was something about the Sea Hornet that made me feel that I had total mastery of it; I revelled in its sleek form and the immense surge of power always to hand..."

"Circumstances had conspired against the Sea Hornet in obtaining the recognition that it justly deserved as a truly outstanding warplane...in my book the Sea Hornet ranks second to none for harmony of control, performance characteristics and, perhaps most important, in inspiring confidence in its pilot. For sheer exhilarating flying enjoyment, no aircraft has ever made a deeper impression on me than did this outstanding filly from the de Havilland stable."

Design

The de Havilland Hornet bore a family resemblance to the larger Mosquito, but it was an entirely fresh design albeit one that drew extensively upon experiences from, and the design of, the Mosquito. It was powered by a pair of highly developed Rolls-Royce Merlin engines, producing 2,070 hp each, which drove four-bladed propellers (manufactured by de Havilland Propellers). According to aviation author P.J. Birtles, the efficiency and power of this configuration gave the Hornet "a higher performance than any other propeller driven aircraft". The Hornet's principal armament was four short-barrelled 20 mm (.79 in) Hispano V cannons, other munitions typically used included various rockets and bombs.

Fuselage construction was identical to the earlier Mosquito: a balsa wood "pith" sandwiched between plywood sheets which were laid in diagonal panels. Aerolite formaldehyde cement was the bonding agent. The fuselage halves were built on large concrete or wood patterns and equipment was fitted in each half; they were then joined along the top and bottom centre lines using wooden reinforcing strips. The entire fuselage was then tightly wrapped in fine aviation fabric which was doped in place. The tailfin which had the trademark gracefully-curved de Havilland shape, was an integral part of the rear fuselage. On late F.1s and further models of production aircraft, a fin fillet was added to the base of the unit. The horizontal tail unit was an all-metal structure, again featuring the distinctive de Havilland shape, which was later repeated on the Chipmunk and Beaver.

Construction was of mixed balsa/plywood similar to the Mosquito but the Hornet differed in incorporating stressed Alclad lower-wing skins bonded to the wooden upper wing structure using the new adhesive Redux. The two wing spars were redesigned to withstand a higher load factor of 10 versus 8. Apart from the revised structure, the Hornet's wings were a synthesis of aerodynamic knowledge that had been gathered since the design of the Mosquito, being much thinner in cross-section, and with a laminar flow profile similar to the P-51 Mustang and Hawker Tempest. The control surfaces consisted of hydraulically-operated split flaps extending from the wing root to outboard of the engine nacelles; as on the Mosquito, the rear of the nacelle was part of the flap structure. Outboard, the Alclad-covered ailerons extended close to the clipped wing tips and gave excellent roll control.

The Hornet used "slimline" Merlin engines of types 130 and 131, which had engine ancillaries repositioned to minimise frontal area and drag. It was unusual for a British design in having propellers that rotated in opposite directions; the two engine crankshafts rotated in the same direction but the Merlin 131 added an idler gear to reverse its propeller's rotation (to clockwise, viewed from the front). This cancelled the torque effect of two propellers turning in the same direction that had affected earlier designs (such as the Mosquito). It also reduced adverse yaw caused by aileron trim corrections and generally provided more stable and predictable behaviour in flight. de Havilland tried propellers that rotated outward at the tops of their arcs (as in the P-38 Lightning), but this configuration blanketed the fin and reduced rudder effectiveness at low speeds, compromising ground handling. On production Hornets the conventionally rotating Merlin 130 was on the port wing with the Merlin 131 on the starboard.

Because of the revised induction arrangements of the Merlin 130 series, the supercharger and carburettor air intakes could be placed in the leading edges of the wings, outboard of the nacelles. (Other versions of the Merlin, which used "updraft" induction arrangements, required that the intakes be placed in a duct below the main engine cowling). The main radiators were also mounted in the inboard leading edges of the wings. Internal fuel, to a maximum capacity of 432 Imp gal (1,964 l) (F.3) was stored in four self-sealing wing tanks, which were reached through detachable panels forming part of the lower wing surfaces. To assist airflow over the wing, the engine nacelles were mounted low, which meant that the undercarriage legs were reasonably short and the pilot's field of view was improved. The single-legged undercarriage units were simpler and cleaner than those of the Mosquito, using the same de Havilland-developed, rubber-in-compression energy absorption system. The main wheels were also smaller and lighter.

To further aid the pilot's field of view, the unpressurised cockpit was mounted well forward in the fuselage and was housed under an aft-sliding perspex blister canopy. The three-panel windscreen was designed so that refraction through the panels meant that there were no obvious blind spots caused by the corner tie-rods; all three panels were bullet-proof laminated glass. An armour-plated bulkhead (hinged near the top to provide access to the back of the instrument panel and the rudder pedals), was part of the nose structure, with the pilot's back and head being protected by another armoured bulkhead built into the cockpit. Below and behind the cockpit floor was a bay housing the aircraft's principal armament of four 20 mm cannon, which had a maximum of 190 round per cannon which fired through short blast tubes. The Sea Hornet had a similar armament to its land-based counterparts.

Operational history

Hornet

In mid-1946, the Hornet entered squadron service with 64 Squadron, based at RAF Horsham St Faith. Next to convert to the Hornet was 19 Squadron at RAF Wittering, followed by 41 Squadron and 65 Squadron, both based at RAF Church Fenton. No. 65 Sqn participated in one of the first official overseas visits by an RAF unit when they visited Sweden in May 1948. Pilot conversion to the Hornet was provided by No. 226 Operational Conversion Unit (O.C.U.) which was based at RAF Molesworth.

During their relatively short operational service, Hornets participated in several record attempts and air races; for example, on 15 September 1949 Flight Lieutenant H. Peebles flew from RAF Bovingdon to Gibraltar at an average speed of 357.565 mph (574.445 km/h), setting a new British point-to-point record. Peebles' record stood for only three days, being broken when the same Hornet, flown by Group Captain A.P.C. Carver, returned to Bovingdon, averaging 435.871 mph (701.466 km/h). On 31 August 1946, Geoffrey Pike attained third place in PX224 in the Lympne High Speed Handicap race, having flown a recorded average speed of 345.5 mph. On 30 July 1949, PX286 participated in the National Air Races at Elmdon; when flown by Geoffrey Pike, it clocked the fastest lap at 369 mph and attained second place overall.

Operationally, the Hornet I (later re-designated as the F.1) lasted only a short time before being superseded by the improved F.3 version. The first Hornet F.3 was PX 366, which flew at the Farnborough Air Show in June 1946. New units to convert to this mark were 33 Squadron, 45 Squadron (based at RAF Tengah, Singapore where, in early 1952, the unit converted to the Hornet from the unreliable Bristol Brigand) and 80 Squadron.

In 1951, considerable numbers of Hornets were redeployed from Fighter Command to the squadrons of the Far East Air Force (FEAF). Along with 64 Sqn, 33, 45, and 80 squadrons participated in combat operations during the Malayan Emergency. Upon arrival, the Hornets were promptly used to replace Bristol Beaufighters and Supermarine Spitfires that were being operated in support of ground security forces against Communist guerrillas fighting in the region. Armed with rockets and/or 1,000 lb (454 kg) bombs, the Hornets, with their long range and good endurance, were able to spend up to two hours loitering over a given target area, which was particularly useful because target identification often proved to be challenging and time consuming.

The Hornets were often sortied in conjunction with strikes from Avro Lincoln bombers. Other activities included the aerial escorting of ground convoys. The Hornet proved to be very reliable; 45 Sqn Hornets, based in Singapore, achieved a total of 4,500 operational sorties over five years, more than any other squadron in the FEAF.

On 23 July 1954, two Hornets from RAF Kai Tak in Hong Kong were the first to arrive on the scene of a shootdown of a Cathay Pacific Skymaster off the coast of Hainan Island. On 21 May 1955, the last operational Hornet sortie was flown; by mid-1956, all Hornets had been recorded as having been withdrawn from operational service. No complete examples of the Hornet remain in existence today.

Sea Hornet

On 1 June 1947, 801 Squadron was reformed to become the first squadron to operate the Sea Hornet, based at RNAS Ford. After relocating to Arbroath, the squadron participated in numerous trials for the type prior to the Sea Hornet's first seaborne deployment, having embarked upon HMS Implacable in 1949. In 1951, a further transfer was made to HMS Indomitable: during their time onboard the Sea Hornets contributed to a multinational maritime exercises as long-range fighter escort and strike aircraft; however, in June 1951, they were replaced by single-engined Hawker Sea Furies.

Further Sea Hornet deliveries were attached to various Naval Squadrons, including three which were attached to 806 Squadron in 1948 which, along with a Vampire and two Sea Furies, were embarked on HMCS Magnificent for a tour of North America in 1948. During the North American tour, multiple Sea Hornets performed several spectacular flying displays at the International Air Exposition in New York City between 31 July and 8 August. In mid-1948, one Sea Hornet, PX219, was adapted to carry two Highballs in an installation that was developed but not applied to the fleet. The equipment was removed during January 1949 and it is currently unknown if the Hornet ever dropped a Highball during flight.

On 20 January 1949, 809 Squadron became the first squadron to be equipped with the Sea Hornet NF 21, having been reformed specifically to operate the type, based at RNAS Culdrose. 809 Squadron was the only front-line unit to use this variant; following an initial workup period, the squadron briefly transferred to HMS Illustrious for deck landing practice. In May 1951, the NF.21s of 809 Squadron relocated to HMS Vengeance to form a portion of the FAA's first all-weather air group.

On 16 October 1951, a formation of four NF.21 aircraft flew non-stop from Gibraltar to Lee-on-the-Solent, Hampshire, England, in 3 hours 10 minutes at an average speed of just under 330 mph; on 24 November 1951, a single Sea Hornet flew the same route in 2 hours 45 minutes at an average speed of 378 mph. During a brief deployment in 1952, it was quickly determined that the Sea Hornet was not suitable for use onboard the Navy's light fleet carriers. 809 Squadron was briefly seconded to the RAF at Coltishall prior to being deployed to Hal Far, Malta; it was on Malta that the Squadron was disbanded in 1954 to be reequipped with the jet-powered de Havilland Sea Venom.

The NF.21 later equipped the Fleet Requirements Units at Hal Far, Malta, and St Davids, West Wales. One Sea Hornet F.20, TT 213, was acquired by the RAAF from the Ministry of Supply in the United Kingdom. The aircraft was used by the Aircraft Research and Development Unit (ARDU), at Laverton, Victoria, Australia from 1948 to 1950. It was mainly used for evaluation and tropical trials. Through 1956 and 1957, the majority of the retired Hornets were scrapped, having badly deteriorated while subject to weather conditions while stored. As with its land-based cousin, no complete examples of the Sea Hornet remain extant.

Remains

Preserved parts from a Hornet can be found in the UK and Canada. The UK-based project has a forward fuselage reconstruction for a Hornet F.1. This includes many original parts, with the new-build items being made to original drawings. The same collection has a sizeable piece of wing, main and tail wheels and two canopies. Two rear fuselage sections (VX250 and VW957) are also in store, as well as the belly door, a main undercarriage leg and one rear engine/undercarriage fairing. In the province of Alberta, Canada a fragmented wing section from TT193 is in store.

Variants

  • Hornet F.1 : Fighter version, 60 built.
  • Hornet PR.2 : Photo-reconnaissance version, five built.
  • Hornet F.3 : Fighter version, 132 built.
  • Hornet FR.4 : Fighter-reconnaissance version, 12 built.
  • Sea Hornet F.20 : A navalised version for service on British aircraft carriers, 79 built.
  • Sea Hornet NF.21 : Fleet Air Arm night fighter powered by Merlin 133/134 engines, 72 built.
  • Sea Hornet PR.22 : Photo-reconnaissance version, 23 built.

Operators

  • Australia : Royal Australian Air Force used one Sea Hornet F.20 for evaluation and tropical trials.
  • Canada : Royal Canadian Air Force operated briefly one former Royal Navy Sea Hornet F.20 in 1948 for test purposes. It was operated by CEPE Canadian Experimental and Proving Establishment, at RCAF Namao, Edmonton, Alberta, in company with a Hawker Sea Fury. When surplused, it was purchased by Spartan Air Services and operated until one of the engines failed. It was scrapped sometime in the 1950s.
  • United Kingdom :
    • Royal Air Force
    • Fleet Air Arm

— — — = = — — —

This text is available under the Creative Commons Attribution-ShareAlike License
Source : Article De Havilland Hornet of Wikipedia ( authors )

de Havilland Hornet

  • Role : Land and naval-based fighter aircraft.
  • National origin : United Kingdom.
  • Manufacturer : de Havilland.
  • First flight : 19 April 1944.
  • Introduction : 1946.
  • Retired : 1956.
  • Primary users :
    • Royal Air Force.
    • Royal Navy.
  • Produced : 1945 to 1950.
  • Number built : 383.
  • Specifications (Hornet F.1)

  • Crew : 1.
  • Length : 35 ft 6 in (10.82 m).
  • Height : 14 ft 2 in (4.32 m).
  • Wingspan : 45 ft (13.72 m).
  • Wing area : 361 ft² (33.54 m²).
  • Wing loading : 43.82 lb/ft² (213.9 kg/m²).
  • Empty weight : 11,292 lb (5,122 kg).
  • Loaded weight : 15,820 lb (7,176 kg).
  • Max. takeoff weight : 18,250 lb (2 x 200 gal drop tanks) (8,278 kg).
  • Maximum speed : 475 mph at 21,000 ft (764 km/h at 6,400 m).
  • Cruise speed : 270 mph (20,000 ft).
  • Range : 1,480 mi (2,600 mi max) (2,382 km (4,184 km max)).
  • Service ceiling : 41,500 ft (12,650 m).
  • Rate of climb : 4 minutes to 20,000 ft. Average 5,000 ft/min (25.4 m/s).
  • Powerplant : Two Rolls-Royce Merlin 130/131 12-cylinder engines.
  • Power : 2,070 hp (1,544 kW) each.
  • Propellers : de Havilland four blade.
  • Propeller diameter : 12-foot (3.7 m).
  • Armament :
    • Four 20 mm (.79 in) Hispano Mk. V cannons (with 190 rpg) in lower fuselage nose.
    • Two 1,000 lb (454 kg) bombs under wing, outboard of engines.
    • Eight "60 lb" (27 kg) RP-3 unguided rockets (Hornet F.3).
  • Avionics : ASH radar fitted in Sea Hornet NF Mk 21.

— — — = = — — —

This text is available under the Creative Commons Attribution-ShareAlike License
Source : Article De Havilland Hornet of Wikipedia ( authors )
de Havilland DH 103 Hornet : Your comments on this subject
Powered by Disqus
Top
Legal Credits FAQ Help Site Map

Terms of use for the services available on this site

By using this Website, Users agree to the following terms of use and rules :

Definitions

  • Webmaster : Head Administrator with all authority over the management and development of the Website.
  • Administrator : Anyone that was given by the Webmaster full or partial access to the Website's structure or with moderation rights on messages posted by Users.
  • User or Visitor : Any person visiting the Website pages.
  • Website : The following provisions apply to a single Website accessible via the www.aircraftube.com, www.aircraftube.org, www.aircraftube.net and www.all-aircraft.com. URL's
  • Service : All free informations and tools contained on the Website.
  • Comments : All text written by users on Blogs and comment pages available on the Website.
  • Media : All media available on or through the Website. One must distinguish the local media (photos, curves, drawings) and the external media (videos) which the Website refers.
  • Purpose of this site

    The purpose of this non-commercial site is purely educational. Reflecting a passion, it is also there to preserve the memory of all those who gave their lives, their health or energy in the name of freedom, aviation safety or simply our passenger comfort.

    Copyright

    Some media may have escaped the vigilance of Administrators with regard to copyrights. If a user reports copyright infringement, he will be asked to prove that he is indeed the rights's owner for the concerned media. If so, his decision on the Administrator's next action will be respected: A total suppression of the Media on the Website, or the addition of some owner's reference. The publication of a media on the internet normally having as a goal to make it visible to many people, the Administrators expect in any case that the second option will be most often chosen.

    Pursuant to the Law on copyright and related rights, the user has the right to download and reproduce information on the Website for personal use and provided that the source is mentionned. They cannot however be used for commercial or advertising purposes.

    Using Blogs and filing comments

  • Moderator : The Administrator reserves the right to prevent the publication of comments that are not directly related to the Service without providing any explanation. Similarly, all insults, out of scope or unethical material will be banned.
  • Identification : Persons wishing to post a comment or use any form of contact are required to provide identification by the means of a valid e-mail address.
  • Responsibilities : Comments are posted on the Website under the unique responsability of their authors and the Administrators may in no case be liable for any statements or claims that the users might have issued.
  • As the comment system is hosted and maintained on servers external to the Website, the Administrators may in no circumstances be held responsible for the use that administrators of these servers or other third parties may have with those comments or filed data.

    Content Liability

    The Administrators carefully check the reliability of the sources used. They cannot, however, guarantee the accuracy of any information contained on the Website, partly because of the multiple sources from which they come.

    JavaScript and cookies - Storing information

    This Website imperatively uses JavaScript and cookies to function properly. Neither of these technologies, or other means shall in no case be used on the Website for the retention or disclosure of personal information about Visitors. Exceptions to this rule will involve storing the Users banned for inappropriate comments they might have given as well as contact information for Users wishing to subscribe to future newsletters.

    When a user accesses the Website, the corresponding servers may automatically collect certain data, such as IP address, date and time of Website access, viewed pages and the type of browser used. This information is kept only for the purpose of measuring the number of visitors to the different sections of the site and make improvements.

    Donations - Advertising

    To continue providing the Service for free, the Webmaster reserves the right to insert advertising or promotional messages on any page of the Site. In the same idea, any donations will only by used to cover the running costs of the site, such as hosting, connection fees, hardware and software necessary for the development and maintenance of the Website.

    Links and other websites

    Administrators shall in no case be liable for the non-availability of websites operated by third parties to which users would access through the Website.

    Administrators assume no liability for any content, advertising, products and/or services available on such third party websites. It is reminded that those sites are governed by their own terms of use.

    Placing a link to third party sites or authorize a third party to include a link on their website refering to this Website does not mean that the Administrators recommend in any way the products or services offered by these websites.

    Modifications

    The Webmaster reserves the right to modify at any time without notification the present terms of use as well as all content or specific functionality that the Website offers.

    The modified terms and conditions immediately apply to the using Visitor when changes come online. Visitors are invited to consult the site regularly on the most current version of the terms and conditions

    Governing Law and Jurisdiction

    These general conditions are governed by Belgian law.

    In case of dispute regarding the interpretation and/or execution of the above terms, the parties agree that the courts of the district of Nivelles, Belgium shall have exclusive jurisdiction power.

    Credits page

    Wikipedia.org

    Wikipedia is a collaboratively edited, multilingual, free Internet encyclopedia.

    Youtube

    YouTube is a video-sharing website on which users can upload, view and share videos.

    Special thanks to all Youtube quality aviation vids providers, specially (Those I forgot, please excuse me or report) :

    Airboyd
    Andys Video
    Aviation videos archives
    Bomberguy
    Classic Aviation TV
    Historical Aviation Film Unit
    Horsemoney
    Jaglavaksoldier
    Joluqa Malta
    Just Planes
    Koksy
    Classic Airliners & Vintage Pop Culture
    Memorial Flight
    Octane130
    Okrajoe
    SDASM archives
    Spottydog4477
    The Aviators TV
    Valentin Izagirre Bengoetxea
    Vexed123
    VonBerlich
    Zenos Warbirds

    Bundesarchiv

    The German Federal Archives or Bundesarchiv are the National Archives of Germany.

    FAQ

    I don't see my comments any more!

    Please note that each page has it's own comment entry. So, if you enter a comment i.e. on the B-747, you will only see it on that related page.

    General comments are accessed via the "BLOG En" button.

    Comments are moderated, so please allow some delay before they appear, specially if you are outside Europe.

    Menus are developing below the page, because they are too long!

    But they remain accessible, for example by scrolling the mouse wheel, or with your finger (on the menu) on a smartphone or tablet.

    I see adds on all videos.

    Use a good free add remover software.

    The site is loading random pages at startup.

    We think it is a good way to bring back the memory of aircraft, persons or events sometimes quite forgotten.

    HELP PAGE

    Why this site?

    Discovery

    This website is dedicated to one's aeronautical passion (which I hope we share) and was realised mainly as an educationnal tool. Knowing that, you'll notice that each new visit brings random topics for the purpose of making new discoveries, some achievements or characters certainly not deserving the oblivion into which they have sometimes fallen.

    By these pages, we also want to pay tribute to all those who gave at one time or another, their lives or health in the name of freedom, aeronautical security or simply our comfort.

    Centralisation

    Internet is full of websites dedicated to aviation, but most are dedicated to subjects or periods that are very limited in space or time. The purpose of this site is to be as general as possible and thus treats all events as well as characters of all stripes and times while putting much emphasis on the most significant achievements.

    The same years saw birth of technologies like photography and cinema, thus permitting illustration of a large part of important aeronautical events from the start. Countless (and sometimes rare) media recently put online by enthousiasts finally give us access to these treasures, but the huge amount of information often makes things a little messy. A centralization effort is obviously most needed at this level.

    All persons who directly or indirectly contributed to the achievement or posting of such documents are here gratefully acknowledged.

    General

    Fluid website

    This site automatically fits the dimensions of your screen, whether you are on a desktop computer, a tablet or a smartphone.

    Bilingual website

    You can change the language by clicking on the flag in the upper left or via "Options" in the central menu. Of course, the videos remain in the language in which they were posted ...

    Browser compatibility

    The site is not optimized, or even designed to run on older browsers or those deliberately deviating from standards. You will most probably encounter display issues with Internet Explorer. In this case, it is strongly recommended installing a modern (and free!) browser that's respecting the standards, like Firefox, Opera, Chrome or Safari.

    Cookies and Javascript

    This site uses cookies and JavaScript to function properly. Please ensure that your browser is configured accordingly. Neither of these technologies, or other means shall in no case be used on the Site for the retention or disclosure of personal information about its Visitors. See the "Legal" page for more on this subject.

    Website layout

    Left menus

    Because of the lack of space on smartphones and small tablets, these menus are hidden. Everything is nevertheless accessible via the main menu option, located between the video and photo sections. This menu is placed there for compatibility reasons with some browsers, which play the videos over the menus.

    "Search" and "Latest" :
    The link "In Titles" restricts the search to the titles of different forms. Use this option if you are looking for a plane, a constructor, a pilot or a particular event that could have been treated as a subject.

    The link "In Stories" will bring you to a search in all texts (the "Story" tab) and will take more time. The search term will appear highlighted in green when opening the corresponding story.

    Would you believe, "Timeline" will show all subjects in chronological order.

    "Random" will reload the entire page with a new random topic.

    The bottom section keeps you abreast of the latest five entries. New topics are added regularly. Don't hesitate to come visit us often : add bookmark.

    Blogs and Comments central section

    Under the photos section comes the comments tabs window :

    You can enter general comments in your own language via one of the two buttons on the left (BLOG EN and BLOG FR). Note that these buttons are accessible regardless of the language to allow some participation in the other language.

    All comments are subject to moderation and will be published only if they comply with the basic rules of decorum, while remaining relevant to the purpose of this site.

    The third tab allows you to enter comments on the shown topic and is bilingual. Personal anecdotes, supplements and other information questions will take place here.

    The "Story" tab shows the explanatory texts. They are most often taken from Wikipedia, a site where we participate regularly.

    The "Data" tab is reserved for list of features and specifications.

    Right menus

    On a smartphone, the lack of space is growing and this menu is moved to the bottom of the page to give priority to videos and pictures.

    The top right icons are links to videos posted by third parties (on their own responsabilities) or by ourselves. The link below these icons will take you to the channel of the one who posted the video. Feel free to suggest other videos if you think they are of some interest (Use the BLOG button or the "Contact" link).